朱厦教授 博士生导师
研究方向:微波光子学与光电融合集成技术
电话:22928933
Email:zhusha@nankai.edu.cn


个人简介

20217月博士毕业于中国科学院半导体研究所祝宁华院士课题组,研究方向为微波光子与光电融合集成技术。同年,加入北京工业大学信息学部国家示范性微电子学院,担任教授,博士生导师,并入选北京工业大学高端人才建设计划。曾于香港城市大学交流学习。20245月,调入南开大学智能光子研究院,任教授,博士生导师,中国通信学会光电融合技术专业委员会委员,SPIE Photonics Asia程序委员会委员,天津市顶尖科学家工作室副主任


研究方向

微波光子雷达, 通感一体化, 光计算, 薄膜铌酸锂微波光子集成


研究成果

发表学术论文50余篇,其中第一/通讯作者论文30余篇,包括NatureNature PhotonicsJournal of Lightwave TechnologyOptics Letters等光学顶级期刊。国际邀请报告5次,主持国家自然科学基金青年基金。2023年入选第九届中国科协青年人才托举工程,荣获2023年度中国光学学会科技创新奖郭光灿光学奖,两度荣获中国科学院院长优秀奖


招聘信息

朱厦教授课题组常年招聘博士后、科研助理,招收博士生、硕士生、本科实习生,有意应聘者请将简历(格式PDF)发送至以下邮箱,以“招聘岗位_应聘者姓名”为题。联系方式:zhusha@nankai.edu.cn




论文专利

1.      S. Zhu#, Y. W. Zhang#, J. X. Feng, Y. J. Wang, K. P. Zhai, H. K. Feng, E. Y. Bun Pun *, N. H. Zhu*, and C. Wang*. “Integrated lithium niobate photonic millimeter-wave radar”, Nature Photonics, 19(2): 204–11, 2025.

2.      Y. Ren, Y. J. Wang, Z. Y. Xiong, Y. P. Bai, H. S. Wen, K. P. Zhai, S. Zhu*, and N. H. Zhu*. Reconfigurable artificial perception system and logic gates based on large-scale antiambipolar 2D heterostructure array, Advanced Functional Materials, 2417358, 2024.

3.      H. K. Feng, T. Ge, X. Q. Guo, B. S. Wang, Y. W. Zhang, Z. X. Chen, S. Zhu, K. Zhang, W. Z. Sun, C. R. Huang, Y. X. Yuan, and C. Wang*. “Integrated lithium niobate microwave photonic processing engine”, Nature, 627 (8002), 80-87, 2024.

4.      Y. W. Zhang, J. W Yang*, Z. X. Chen, H. K. Feng, S. Zhu, K. M. Shum, C. H. Chan, and C. Wang. “Monolithic lithium niobate photonic chip for efficient terahertz-optic modulation and terahertz generation”, Nature Communications (During the revision), 2024.

5.     X. Y. Zhang, K. P. Zhai*, S. Zhu*, H. S. Wen, Y. Liu, and N. H. Zhu. “Photonic generation of arbitrary microwave waveforms with anti-dispersion transmission capability”, Micromachines, 15 (10), 1214, 2024.

6.      S. Zhu*, Y. W. Zhang, J. X. Feng, Y. J. Wang, K. P. Zhai, H. K. Feng, E. Y. Bun Pun, N. H. Zhu, and C. Wang. “Integrated photonic millimeter-wave radar based on thin-film lithium niobate”, CLEO: Applications and Technology. Optica Publishing Group, AM3J. 1, 2024.

7.      K. P. Zhai, X. Y. Zhang, W. T. Wang, B. Chen, Y. Jin, X. H. Du, Y. Liu, J. B. Cui, Q. K. Li, H. Zhou, H. S. Wen*, G. M. Zhao*, S. Zhu*, and N. H. Zhu. “Photonic-assisted microwave harmonic down-conversion based on four-wave mixing in a silicon integrated waveguide doped with reverse-biased p-i-n junction”, Journal of Lightwave Technology, 41 (23), 7268-7275, 2023.

8.      S. Zhu#, Y. W. Zhang#, Y. Ren#, Y. J. Wang#, K. P. Zhai, H. K. Feng, Y. Jin, Z. Z. Lin, J. X. Feng, S. Y. Li, Q. Yang, N. H. Zhu, E. Y. Bun Pun*, and C. Wang*. “Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate”, Advanced Photonics Research, 4 (7), 2300045, 2023.

9.      K. P. Zhai#, X. H. Cao#, S. Zhu*, H. S. Wen*, Y. F. Chen, Y. Jin, X. Y. Zhang, W. Chen, J. B. Cui, and N. H. Zhu. “An all-optical microwave frequency divider with tunable division factors based on DP-DPMZM”, Photonics, 10 (2), 138, 2023.

10.     S. Zhu*, M. X. Cui, J. X. Feng, K. P. Zhai, N. Zhou, Y. W. Zhang, E. Y. Bun Pun, N. H. Zhu, and C. Wang. “Photonic-assisted multi-format microwave signal generation based on thin-film lithium niobite”, SPIE/COS Photonics Asia, 12761, 24-28, 2023.

11.     S. Zhu*, Y. W. Zhang, Y. Ren, Y. J. Wang, K. P. Zhai, H. P. Feng, N. H. Zhu, E. Y. Bun Pun, and C. Wang. “Waveguide-integrated thin-film lithium niobate-two-dimensional material photodetectors”, CLEO: Science and Innovations. Optica Publishing Group, SF3J. 5. 2023.

12.     S. Zhu, X. J. Fan, X. H. Cao, Y. X. Wang, N. H. Zhu, M. Li, and W. Li*. “Photonic generation and antidispersion transmission of background-free multiband arbitrarily phase-coded microwave signals”, IEEE Transactions on Microwave Theory and Techniques, 70 (4), 2290-2298, 2022.

13.     S. Zhu, Z. J. Chen*, Y. X. Wang, Y. Jin, K. P. Zhai, Y. P. Bai, J. Tan, P. Y. Wan, X. Liu, W. Li, and N. H. Zhu*. “Single-modulator based multi-format switchable signal generator without background noise”,Journal of Lightwave Technology, 40 (20), 6693-6700, 2022.

14.     S. Zhu, K. P. Zhai, W. Li, and N. H. Zhu*. “Stimulated-Brillouin-scattering-based arbitrarily phase coded microwave waveform transmitter with anti-dispersion transmission”, Chinese Optics Letters, 20 (8), 083901, 2022.

15.     K. P. Zhai, S. Zhu*, and N. H. Zhu*. “Stimulated Brillouin scattering based image-reject microwave signal harmonic down-converter”, IEEE Photonics Journal, 14 (6), 1-6, 2022.

16.     K. P. Zhai, S. Zhu*, Y. F. Chen, H. S. Wen, Y. Jin, W. Chen, and N. H. Zhu*. “Data fragmentation multipath secure coherent optical communication system based on electrical signal processing”, IEEE Photonics Journal, 14 (4), 1-6, 2022.

17.      S. Zhu, J. X. Feng, K. P. Zhai, and N. H. Zhu*. “Optical domain controlled microwave signal processing technology”, SPIE/COS Photonics Asia, 12311, 1231102, 2022.

18.     S. Zhu, J. X. Feng, K. P. Zhai, Y. W. Zhang, N. H. Zhu, and E. Y. Bun Pun*. “Multi-format switchable microwave signal generation based on optical domain modulation”, IEEE TENCON,1-3, 2022.

19.     S. Zhu, M. Li, N. H. Zhu, and W. Li*. Optical domain control-based frequency chirped microwave waveform generation and anti-dispersiontransmission over optical fiber”,SPIE/COS Photonics Asia, 11891, 1189102, 2021. (Invited paper)

20.     S. Zhu, X. J. Fan, B. Xu, W. Sun, M. Li, N. H. Zhu, and W. Li*. Polarization manipulated fourier domain mode-locked optoelectronic oscillator”,Journal of Lightwave Technology, 38 (19), 5270-5277, 2020.

21.     S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Microwave photonic frequency down-conversion and channel switching for satellite communication”,Optics Letters, 45 (18), 5000-5003, 2020.

22.     S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase stations fiber transmission, Optics Letters, 45 (5), 1285-1288, 2020.

23.     S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. “Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber”, Optics Communications, 469, 125805, 2020.

24.     S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. FCC-compliant millimeter-wave ultra-wideband pulse generator based on optoelectronic oscillation”,Optics Letters, 44 (14), 3530-3533, 2019.

25.     S. Zhu, M. X. Gao, M. Li, N. H. Zhu, and W. Li*. Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio”,Optics Letters, 44 (8), 2012-2015, 2019.

26.     S. Zhu, M. Li, N. H. Zhu, and W. Li*. Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission”,Optics Letters, 44 (4), 923-926, 2019.

27.     S. Zhu, M. Li, X. Wang, N. H. Zhu, Z. Z. Cao, and W. Li*. “Photonic generation of background-free binary phase-coded microwave pulses”, Optics Letters, 44 (1), 94-97, 2019.

28.     S. Zhu, M. X. Gao, M. Li, N. H. Zhu, and W. Li*. A background-free phase-coded microwave pulse generator by optoelectronic oscillation”,Optics Communications, 453, 124318, 2019.

29.     S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li*. 1 × N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel mach zehnder modulator”,Optics Communications, 431, 10-13, 2019.

30.     S. Zhu, M. Li, N. H. Zhu, and W. Li*. Photonic radio frequency self-interference cancellation and harmonic down-conversion with elimination of power fading for in-band full-duplex radio-over-fiber system, IEEE Photonics Journal, 11 (5), 1-10, 2019.

31.     M. Gao#, S. Zhu#, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Photonic triangular waveforms generation based on nonlinear polarization rotation using a highly nonlinear fiber”,Optical Engineering, 58 (11), 110501, 2019.

32.     S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Photonic generation and transmission of phase-modulated microwave signals”,SPIE/COS Photonics Asia, 11182, 111820B, 2019. (Invited paper)

33.     S. Zhu, M. Li, N. H. Zhu, and W. Li*. Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading”,Optics Letters,43 (11), 2466-2469, 2018.

34.     S. Zhu, Z. Shi, M. Li, N. H. Zhu, and W. Li*. Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars”,Optics Letters, 43 (3), 583-586, 2018.

35.     S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li*. Photonic generation of ultra-wideband signal by truncating a continuous wave into a pulse”,IEEE Photonics Technology Letters, 30 (21), 1862-1865, 2018.

36.     S. Zhu, X. Wang, M. Li, N. H. Zhu, and W. Li *. A simple photonic method to generate square and triangular microwave waveforms”,Optics Communications, 426, 654-657, 2018.

Cooperation:

37.     K. P. Zhai, X. Y. Zhang, Y. Liu, R. H. Zhang, S. Zhu, P. F. Xu*, H. S. Wen*, H. Zhou*, G. M. Zhao, and N. H. Zhu*. “Frequency-modulated continuous-wave laser source based on four-wave mixing process in a silicon integrated waveguide doped with reverse-biased p-i-n junction”, Journal of Lightwave Technology, 42 (21), 7551-7558, 2024.

38.     K. P Zhai, X. Y. Zhang, S. Zhu, Y. Liu, H. S. Wen, and N. H. Zhu*. “Secure optical communication system based on polarization regulation of the data fragmentation multipath transmission technology”, Optics Letters, 49 (11), 3226-3229, 2024.

39.     X. Y. Zhang, S. Zhu, H. S. Wen, K. P. Zhai*, Y. Liu*, and N. H. Zhu. “Photonic generation of microwave waveforms with tunability and anti-dispersion capability”, Conference on Lasers and Electro-Optics Pacific Rim. IEEE, 1-2, 2024.

40.     Y. P. Bai, S. Zhu, X. Y. Song, Z. H. Su, Z. N. Zheng*, X. L. Gao*, and S. G. Huang. “Multichannel microwave photonic phase shifter with improved power efficiency and suppressed third-order intermodulation distortions”, Journal Of Lightwave Technology, 41 (23), 7139-7147, 2023.

41.     K. P. Zhai, W. T. Wang*, S. Zhu, H. S. Wen, and N. H. Zhu. “Optical frequency comb generation based on optoelectronic oscillator and Fabry-Perot phase modulator”, IEEE Photonics Journal, 15 (6), 1-5, 2023.

42.     H. K. Feng*, T. Ge, S. Zhu, K. Zhang, Y. W. Zhang, Z. X. Chen, and C. Wang. “Integrated lithium niobate microwave photonics for high-speed analog signal processing”, CLEO: Applications and Technology. Optica Publishing Group, AM3M. 2. 2023.

43.     X. J. Fan, Y. F. Chen, X. H. Cao, S. Zhu, M. Li, N. H. Zhu, and W. Li*. “Photonic-assisted frequency downconverter with self-interference cancellation and fiber dispersion elimination based on stimulated Brillouin scattering”, Optics Express, 30 (17), 30149-30163, 2022.

44.     Z. J. Chen, H. Y. Li, M. Q. Jiang, S. Zhu, and P. Y. Wan*. “A dynamic-range self-compensation technique in a noise shaping SAR ADC utilizing mismatch error shaping”, Electronics Letters, 58 (10), 388-389, 2022.

45.     X. J. Fan, S. Zhu, J. F. Du, M. Li, N. H. Zhu, and W. Li*. “Photonic generation of quadruple bandwidth dual-band dual-chirpmicrowave waveforms with immunity to power fading”, Optics Letters, 46 (4), 868-871, 2021.

46.     X. J. Fan, S. Zhu, Y. Xiao, M. Li, N. H. Zhu, and W. Li*. “Generation and anti-dispersion transmission of quadrupling-bandwidthdual-chirp microwave waveform based on a polarization-division multiplexing Mach-Zehnder modulator”, OpticalEngineering, 60 (2), 026105, 2021.

47.     B. R. Xu, J. Z. Sun, S. J. Xia, S. Zhu, Y. Liu, N. H. Zhu*, and H. W. Sun*. Coplanar electrode directly modulated lasers with different cavity length, Microwave and Optical Technology Letters, 63 (5), 1434-1439, 2021.

48.     D. D. Wang, Y. Liu, B. R. Xu, W. H. Sun, Z. Y. Jia, S. Zhu, and N. H. Zhu. Traveling wave electrode simulation for integrated lithium niobite electro-optic modulators”,Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 2021.

49.     L. Wang, G. Y. Li, T. F. Hao, S. Zhu, M. Li, N. H. Zhu, and W. Li*. “Photonic generation of multiband and multi-format microwave signals based on a single modulator”, Optics Letters, 45 (2), 6190-6193, 2020.

50.     D. F. Shi, J. Wen, S. Zhu, Z. Y. Jia, Z. Shi, M. Li, N. H. Zhu, and W. Li*. Instantaneous microwave frequency measurement based on non-sliced broadband optical source”,Optics Communications, 458, 124758, 2020.

51.     G. Y. Li, L. Wang, S. Zhu, M. Li, N. H. Zhu, and W. Li*. Photonic generation of dual-chirp microwave waveforms based on a tunable optoelectronic oscillator”,IEEE Photonics Technology Letters, 32 (10), 599-602, 2020.

52.     J. Z. Sun, B. R. Xu, W. H. Sun *, S. Zhu, and N. H. Zhu*. The effect of bias and frequency on amplitude to phase conversion of photodiodes”,IEEE Photonics Journal, 12 (4), 2020.

53.     W. H. Sun, S. Zhu, W Li, W. Chen*, and N. H. Zhu*. Noise suppression of distributed acoustic sensing based on f-x deconvolution and wavelet transform”, IEEE Photonics Journal, 12 (1), 2020.

54.     Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li*. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator”,Optics Communications, 428, 131-135, 2018.

55.     W. M. Zhang*, S. Zhu, Y. P. Bai, N. Xi, S. Y. Wang, Y. Bian, X. W. Li, and Y. C. Zhang*. Glow discharge electrolysis plasma initiated preparation of temperature/ph dual sensitivity reed hemicellulose-based hydrogels”,Carbohydrate polymers, 122, 11-17, 2015.

56.     W. M. Zhang*, S. Zhu, Y. Huang, Y. P. Bai, N Xi, and Y. C. Zhang*. Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors”,RSC Advances, 5 (9), 6505-6511, 2015.