朱厦教授 博士生导师
研究方向:微波光子学与光电融合集成技术
电话:22928933
Email:zhusha@nankai.edu.cn


个人简介

朱厦,南开大学教授,博士生导师,南开大学智能光子研究院副院长、天津市顶尖科学家工作室副主任


研究方向

微波光子雷达及其关键技术,通感一体化,光计算,薄膜铌酸锂微波光子集成,低维光电材料制备与异质异构集成



研究成果

发表学术论文50余篇,其中第一/通讯作者论文30余篇,包括NatureNature PhotonicsAdvanced Functional Materials, Journal of Lightwave TechnologyOptics Letters等期刊。作国际邀请报告8次,作为项目负责人主持国家重点研发计划青年科学家项目,国家自然科学基金青年科学基金项目,作为子课题负责人主持国家重点研发计划1项,作为课题负责人主持工信部高质量专项项目2项。担任Photonics Asia分会场主席,中国通信学会光电融合专业技术委员会委员,2023年入选第九届中国科协青年人才托举工程,荣获2023年度中国光学学会科技创新奖郭光灿光学奖,两度荣获中国科学院院长优秀奖




招聘信息

团队常年开放博士后、科研助理岗位,同时面向全国招收博士生、硕士生,提供本科实习机会。在这里,学术氛围浓厚,团队成员和谐互助,鼓励打破常规思维,支持每一个创新想法落地。无论是渴望深耕科研的学术新秀,还是期待在实践中成长的科研爱好者,我们都提供完善的培养体系、前沿的研究课题与广阔的发展平台。诚邀乐于投身科学研究、怀揣科研梦想的伙伴加入我们,携手探索未知,共攀科研高峰!联系方式:zhusha@nankai.edu.cn




论文专利

1.S. Zhu#, Y. W. Zhang#, J. X. Feng, Y. J. Wang, K. P. Zhai, H. K. Feng, E. Y. Bun Pun *, N. H. Zhu*, and C. Wang*. “Integrated lithium niobate photonic millimeter-wave radar”, Nature Photonics, 19(2): 204–11, 2025.

2.Y. Ren, Y. J. Wang, Z. Y. Xiong, Y. P. Bai, H. S. Wen, K. P. Zhai, S. Zhu*, and N. H. Zhu*. Reconfigurable artificial perception system and logic gates based on large-scale antiambipolar 2D heterostructure array, Advanced Functional Materials, 2417358, 2024.

3.H. K. Feng, T. Ge, X. Q. Guo, B. S. Wang, Y. W. Zhang, Z. X. Chen, S. Zhu, K. Zhang, W. Z. Sun, C. R. Huang, Y. X. Yuan, and C. Wang*. “Integrated lithium niobate microwave photonic processing engine”, Nature, 627 (8002), 80-87, 2024.

4.Y. W. Zhang, J. W Yang*, Z. X. Chen, H. K. Feng, S. Zhu, K. M. Shum, C. H. Chan, and C. Wang. “Monolithic lithium niobate photonic chip for efficient terahertz-optic modulation and terahertz generation”, Nature Communications (During the revision), 2024.

5.X. Y. Zhang, K. P. Zhai*, S. Zhu*, H. S. Wen, Y. Liu, and N. H. Zhu. “Photonic generation of arbitrary microwave waveforms with anti-dispersion transmission capability”, Micromachines, 15 (10), 1214, 2024.

6.S. Zhu*, Y. W. Zhang, J. X. Feng, Y. J. Wang, K. P. Zhai, H. K. Feng, E. Y. Bun Pun, N. H. Zhu, and C. Wang. “Integrated photonic millimeter-wave radar based on thin-film lithium niobate”, CLEO: Applications and Technology. Optica Publishing Group, AM3J. 1, 2024.

7.K. P. Zhai, X. Y. Zhang, W. T. Wang, B. Chen, Y. Jin, X. H. Du, Y. Liu, J. B. Cui, Q. K. Li, H. Zhou, H. S. Wen*, G. M. Zhao*, S. Zhu*, and N. H. Zhu. “Photonic-assisted microwave harmonic down-conversion based on four-wave mixing in a silicon integrated waveguide doped with reverse-biased p-i-n junction”, Journal of Lightwave Technology, 41 (23), 7268-7275, 2023.

8.S. Zhu#, Y. W. Zhang#, Y. Ren#, Y. J. Wang#, K. P. Zhai, H. K. Feng, Y. Jin, Z. Z. Lin, J. X. Feng, S. Y. Li, Q. Yang, N. H. Zhu, E. Y. Bun Pun*, and C. Wang*. “Waveguide-integrated two-dimensional material photodetectors in thin-film lithium niobate”, Advanced Photonics Research, 4 (7), 2300045, 2023.

9.K. P. Zhai#, X. H. Cao#, S. Zhu*, H. S. Wen*, Y. F. Chen, Y. Jin, X. Y. Zhang, W. Chen, J. B. Cui, and N. H. Zhu. “An all-optical microwave frequency divider with tunable division factors based on DP-DPMZM”, Photonics, 10 (2), 138, 2023.

10.S. Zhu*, M. X. Cui, J. X. Feng, K. P. Zhai, N. Zhou, Y. W. Zhang, E. Y. Bun Pun, N. H. Zhu, and C. Wang. “Photonic-assisted multi-format microwave signal generation based on thin-film lithium niobite”, SPIE/COS Photonics Asia, 12761, 24-28, 2023.

11.S. Zhu*, Y. W. Zhang, Y. Ren, Y. J. Wang, K. P. Zhai, H. P. Feng, N. H. Zhu, E. Y. Bun Pun, and C. Wang. “Waveguide-integrated thin-film lithium niobate-two-dimensional material photodetectors”, CLEO: Science and Innovations. Optica Publishing Group, SF3J. 5. 2023.

12.S. Zhu, X. J. Fan, X. H. Cao, Y. X. Wang, N. H. Zhu, M. Li, and W. Li*. “Photonic generation and antidispersion transmission of background-free multiband arbitrarily phase-coded microwave signals”, IEEE Transactions on Microwave Theory and Techniques, 70 (4), 2290-2298, 2022.

13.S. Zhu, Z. J. Chen*, Y. X. Wang, Y. Jin, K. P. Zhai, Y. P. Bai, J. Tan, P. Y. Wan, X. Liu, W. Li, and N. H. Zhu*. “Single-modulator based multi-format switchable signal generator without background noise”,Journal of Lightwave Technology, 40 (20), 6693-6700, 2022.

14.S. Zhu, K. P. Zhai, W. Li, and N. H. Zhu*. “Stimulated-Brillouin-scattering-based arbitrarily phase coded microwave waveform transmitter with anti-dispersion transmission”, Chinese Optics Letters, 20 (8), 083901, 2022.

15.K. P. Zhai, S. Zhu*, and N. H. Zhu*. “Stimulated Brillouin scattering based image-reject microwave signal harmonic down-converter”, IEEE Photonics Journal, 14 (6), 1-6, 2022.

16.K. P. Zhai, S. Zhu*, Y. F. Chen, H. S. Wen, Y. Jin, W. Chen, and N. H. Zhu*. “Data fragmentation multipath secure coherent optical communication system based on electrical signal processing”, IEEE Photonics Journal, 14 (4), 1-6, 2022.

17.S. Zhu, J. X. Feng, K. P. Zhai, and N. H. Zhu*. “Optical domain controlled microwave signal processing technology”, SPIE/COS Photonics Asia, 12311, 1231102, 2022.

18.S. Zhu, J. X. Feng, K. P. Zhai, Y. W. Zhang, N. H. Zhu, and E. Y. Bun Pun*. “Multi-format switchable microwave signal generation based on optical domain modulation”, IEEE TENCON,1-3, 2022.

19.S. Zhu, M. Li, N. H. Zhu, and W. Li*. Optical domain control-based frequency chirped microwave waveform generation and anti-dispersiontransmission over optical fiber”,SPIE/COS Photonics Asia, 11891, 1189102, 2021. (Invited paper)

20.S. Zhu, X. J. Fan, B. Xu, W. Sun, M. Li, N. H. Zhu, and W. Li*. Polarization manipulated fourier domain mode-locked optoelectronic oscillator”,Journal of Lightwave Technology, 38 (19), 5270-5277, 2020.

21.S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Microwave photonic frequency down-conversion and channel switching for satellite communication”,Optics Letters, 45 (18), 5000-5003, 2020.

22.S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase stations fiber transmission, Optics Letters, 45 (5), 1285-1288, 2020.

23.S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. “Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber”, Optics Communications, 469, 125805, 2020.

24.S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. FCC-compliant millimeter-wave ultra-wideband pulse generator based on optoelectronic oscillation”,Optics Letters, 44 (14), 3530-3533, 2019.

25.S. Zhu, M. X. Gao, M. Li, N. H. Zhu, and W. Li*. Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio”,Optics Letters, 44 (8), 2012-2015, 2019.

26.S. Zhu, M. Li, N. H. Zhu, and W. Li*. Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission”,Optics Letters, 44 (4), 923-926, 2019.

27.S. Zhu, M. Li, X. Wang, N. H. Zhu, Z. Z. Cao, and W. Li*. “Photonic generation of background-free binary phase-coded microwave pulses”, Optics Letters, 44 (1), 94-97, 2019.

28.S. Zhu, M. X. Gao, M. Li, N. H. Zhu, and W. Li*. A background-free phase-coded microwave pulse generator by optoelectronic oscillation”,Optics Communications, 453, 124318, 2019.

29.S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li*. 1 × N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel mach zehnder modulator”,Optics Communications, 431, 10-13, 2019.

30.S. Zhu, M. Li, N. H. Zhu, and W. Li*. Photonic radio frequency self-interference cancellation and harmonic down-conversion with elimination of power fading for in-band full-duplex radio-over-fiber system, IEEE Photonics Journal, 11 (5), 1-10, 2019.

31.M. Gao#, S. Zhu#, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Photonic triangular waveforms generation based on nonlinear polarization rotation using a highly nonlinear fiber”,Optical Engineering, 58 (11), 110501, 2019.

32.S. Zhu, X. J. Fan, M. Li, N. H. Zhu, and W. Li*. Photonic generation and transmission of phase-modulated microwave signals”,SPIE/COS Photonics Asia, 11182, 111820B, 2019. (Invited paper)

33.S. Zhu, M. Li, N. H. Zhu, and W. Li*. Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading”,Optics Letters,43 (11), 2466-2469, 2018.

34.S. Zhu, Z. Shi, M. Li, N. H. Zhu, and W. Li*. Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars”,Optics Letters, 43 (3), 583-586, 2018.

35.S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li*. Photonic generation of ultra-wideband signal by truncating a continuous wave into a pulse”,IEEE Photonics Technology Letters, 30 (21), 1862-1865, 2018.

36.S. Zhu, X. Wang, M. Li, N. H. Zhu, and W. Li *. A simple photonic method to generate square and triangular microwave waveforms”,Optics Communications, 426, 654-657, 2018.

Cooperation:

37.K. P. Zhai, X. Y. Zhang, Y. Liu, R. H. Zhang, S. Zhu, P. F. Xu*, H. S. Wen*, H. Zhou*, G. M. Zhao, and N. H. Zhu*. “Frequency-modulated continuous-wave laser source based on four-wave mixing process in a silicon integrated waveguide doped with reverse-biased p-i-n junction”, Journal of Lightwave Technology, 42 (21), 7551-7558, 2024.

38.K. P Zhai, X. Y. Zhang, S. Zhu, Y. Liu, H. S. Wen, and N. H. Zhu*. “Secure optical communication system based on polarization regulation of the data fragmentation multipath transmission technology”, Optics Letters, 49 (11), 3226-3229, 2024.

39.X. Y. Zhang, S. Zhu, H. S. Wen, K. P. Zhai*, Y. Liu*, and N. H. Zhu. “Photonic generation of microwave waveforms with tunability and anti-dispersion capability”, Conference on Lasers and Electro-Optics Pacific Rim. IEEE, 1-2, 2024.

40.Y. P. Bai, S. Zhu, X. Y. Song, Z. H. Su, Z. N. Zheng*, X. L. Gao*, and S. G. Huang. “Multichannel microwave photonic phase shifter with improved power efficiency and suppressed third-order intermodulation distortions”, Journal Of Lightwave Technology, 41 (23), 7139-7147, 2023.

41.K. P. Zhai, W. T. Wang*, S. Zhu, H. S. Wen, and N. H. Zhu. “Optical frequency comb generation based on optoelectronic oscillator and Fabry-Perot phase modulator”, IEEE Photonics Journal, 15 (6), 1-5, 2023.

42.H. K. Feng*, T. Ge, S. Zhu, K. Zhang, Y. W. Zhang, Z. X. Chen, and C. Wang. “Integrated lithium niobate microwave photonics for high-speed analog signal processing”, CLEO: Applications and Technology. Optica Publishing Group, AM3M. 2. 2023.

43.X. J. Fan, Y. F. Chen, X. H. Cao, S. Zhu, M. Li, N. H. Zhu, and W. Li*. “Photonic-assisted frequency downconverter with self-interference cancellation and fiber dispersion elimination based on stimulated Brillouin scattering”, Optics Express, 30 (17), 30149-30163, 2022.

44.Z. J. Chen, H. Y. Li, M. Q. Jiang, S. Zhu, and P. Y. Wan*. “A dynamic-range self-compensation technique in a noise shaping SAR ADC utilizing mismatch error shaping”, Electronics Letters, 58 (10), 388-389, 2022.

45.X. J. Fan, S. Zhu, J. F. Du, M. Li, N. H. Zhu, and W. Li*. “Photonic generation of quadruple bandwidth dual-band dual-chirpmicrowave waveforms with immunity to power fading”, Optics Letters, 46 (4), 868-871, 2021.

46.X. J. Fan, S. Zhu, Y. Xiao, M. Li, N. H. Zhu, and W. Li*. “Generation and anti-dispersion transmission of quadrupling-bandwidthdual-chirp microwave waveform based on a polarization-division multiplexing Mach-Zehnder modulator”, OpticalEngineering, 60 (2), 026105, 2021.

47.B. R. Xu, J. Z. Sun, S. J. Xia, S. Zhu, Y. Liu, N. H. Zhu*, and H. W. Sun*. Coplanar electrode directly modulated lasers with different cavity length, Microwave and Optical Technology Letters, 63 (5), 1434-1439, 2021.

48.D. D. Wang, Y. Liu, B. R. Xu, W. H. Sun, Z. Y. Jia, S. Zhu, and N. H. Zhu. Traveling wave electrode simulation for integrated lithium niobite electro-optic modulators”,Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 2021.

49.L. Wang, G. Y. Li, T. F. Hao, S. Zhu, M. Li, N. H. Zhu, and W. Li*. “Photonic generation of multiband and multi-format microwave signals based on a single modulator”, Optics Letters, 45 (2), 6190-6193, 2020.

50.D. F. Shi, J. Wen, S. Zhu, Z. Y. Jia, Z. Shi, M. Li, N. H. Zhu, and W. Li*. Instantaneous microwave frequency measurement based on non-sliced broadband optical source”,Optics Communications, 458, 124758, 2020.

51.G. Y. Li, L. Wang, S. Zhu, M. Li, N. H. Zhu, and W. Li*. Photonic generation of dual-chirp microwave waveforms based on a tunable optoelectronic oscillator”,IEEE Photonics Technology Letters, 32 (10), 599-602, 2020.

52.J. Z. Sun, B. R. Xu, W. H. Sun *, S. Zhu, and N. H. Zhu*. The effect of bias and frequency on amplitude to phase conversion of photodiodes”,IEEE Photonics Journal, 12 (4), 2020.

53.W. H. Sun, S. Zhu, W Li, W. Chen*, and N. H. Zhu*. Noise suppression of distributed acoustic sensing based on f-x deconvolution and wavelet transform”, IEEE Photonics Journal, 12 (1), 2020.

54.Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li*. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator”,Optics Communications, 428, 131-135, 2018.

55.W. M. Zhang*, S. Zhu, Y. P. Bai, N. Xi, S. Y. Wang, Y. Bian, X. W. Li, and Y. C. Zhang*. Glow discharge electrolysis plasma initiated preparation of temperature/ph dual sensitivity reed hemicellulose-based hydrogels”,Carbohydrate polymers, 122, 11-17, 2015.

56.W. M. Zhang*, S. Zhu, Y. Huang, Y. P. Bai, N Xi, and Y. C. Zhang*. Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors”,RSC Advances, 5 (9), 6505-6511, 2015.